## [1] "District" "University.Type" "University.Name" "inst_type"
## [5] "college_name" "college_type" "Address" "Website"
## [9] "Management" "year_estd" "Specialised.in" "Location"
## [13] "Upload.Year" "full_name" "full_adress" "lat"
## [17] "long" "AC_NO" "AC_NAME" "PC_NO"
## [21] "PC_NAME"
## # A tibble: 5 x 2
## Management count
## <chr> <int>
## 1 Central Government 11
## 2 Local Body 344
## 3 Private Aided 314
## 4 Private Un-Aided 5801
## 5 State Government 429
I kept Private un-aided as private and clubbed all others as government colleges.

After my initial inspections, I went to merge the college data with UP dynasties data after allotting the coleges to each election year based on the year of establishment
## # A tibble: 12 x 2
## year_el count
## <chr> <int>
## 1 1974 55
## 2 1980 64
## 3 1985 43
## 4 1987 40
## 5 1989 40
## 6 1991 50
## 7 1993 167
## 8 1996 554
## 9 2002 1239
## 10 2007 2050
## 11 2012 2297
## 12 2017 300
Average number of colleges built every year in a constituency is 1.37
This density chart shows the distribution of the number of colleges built in different constituencies during last 10 years
regression run on dynast definition 2
In this regression we look at colleges built during the rule of MLAs selected during the election cycles starting from 1974 to 2017
|
fit.poisson
|
fit.probit
|
Dependent Var.:
|
n_colleges
|
n_college_bin
|
|
|
|
dyn_cum_2
|
-0.0140 (0.1075)
|
-0.2462* (0.1171)
|
term_duration
|
-0.0682 (0.1139)
|
-0.1124 (0.1596)
|
turnout_percentage
|
-0.0081 (0.0082)
|
-0.0072 (0.0071)
|
margin_percentage
|
0.0020 (0.0051)
|
-0.0057 (0.0037)
|
constituency_typeSC
|
-0.0863 (0.1964)
|
0.1361 (0.2613)
|
enop
|
0.0030 (0.0549)
|
-0.0984* (0.0446)
|
log(electors)
|
0.1101 (0.3834)
|
0.1188 (0.4021)
|
Caste control
|
Yes
|
Yes
|
Fixed-Effects:
|
—————-
|
—————–
|
year_el
|
Yes
|
Yes
|
constituency_name
|
Yes
|
Yes
|
___________________
|
________________
|
_________________
|
Family
|
quasipoisson(“log”)
|
Probit
|
S.E.: Clustered
|
by: constituen..
|
by: constituenc..
|
Observations
|
4,275
|
4,177
|
Squared Cor.
|
0.65490
|
0.53951
|
Pseudo R2
|
–
|
0.47348
|
BIC
|
–
|
7,228.6
|
- Tried post 1991 and 1996. Dynast co-effient on both are negative. The model below is post 1991.
|
fit.poisson
|
fit.probit
|
Dependent Var.:
|
n_colleges
|
n_college_bin
|
|
|
|
dyn_cum_2
|
-0.0765 (0.0961)
|
-0.1872* (0.0824)
|
term_duration
|
0.0173 (0.0491)
|
0.0028 (0.0597)
|
turnout_percentage
|
-0.0209*** (0.0054)
|
-0.0050 (0.0046)
|
margin_percentage
|
0.0044 (0.0038)
|
0.0036 (0.0034)
|
enop
|
-0.0310 (0.0435)
|
-0.0524 (0.0434)
|
log(electors)
|
0.9001* (0.3659)
|
0.7062. (0.3942)
|
constituency_typeSC
|
-0.1897 (0.1556)
|
0.0129 (0.1232)
|
Caste control
|
Yes
|
Yes
|
Fixed-Effects:
|
——————-
|
—————–
|
year_el
|
Yes
|
Yes
|
district_name
|
Yes
|
Yes
|
___________________
|
___________________
|
_________________
|
Family
|
quasipoisson(“log”)
|
Probit
|
S.E.: Clustered
|
by: district_name
|
by: district_name
|
Observations
|
2,811
|
2,811
|
Squared Cor.
|
0.36457
|
0.37467
|
Pseudo R2
|
–
|
0.31312
|
BIC
|
–
|
3,407.7
|

UP colleges - Poisson model
|
fit.poisson
|
fit.probit
|
Dependent Var.:
|
n_colleges
|
n_college_bin
|
|
|
|
dyn_cum_2
|
-0.0258 (0.0975)
|
-0.2317* (0.1034)
|
incumbent
|
0.0331 (0.0802)
|
0.0695 (0.1020)
|
margin_percentage
|
0.0036 (0.0046)
|
0.0014 (0.0054)
|
turnout_percentage
|
-0.0169** (0.0063)
|
-0.0072 (0.0067)
|
enop
|
-0.0082 (0.0459)
|
-0.0928. (0.0545)
|
term_duration
|
0.0536 (0.0831)
|
-0.0440 (0.1232)
|
n_schools
|
0.0015*** (0.0002)
|
0.0006** (0.0002)
|
nl_tot
|
4.75e-5*** (1.24e-5)
|
2.49e-5 (1.52e-5)
|
constituency_typeSC
|
-0.2069* (0.0886)
|
0.1032 (0.1539)
|
log(electors)
|
0.1581 (0.4339)
|
0.5690 (0.5972)
|
no_terms
|
0.0074 (0.0436)
|
-0.0178 (0.0391)
|
caste_uc
|
|
0.1428 (0.1617)
|
caste_yadav
|
|
0.2264 (0.2420)
|
caste_non_yadav_obc
|
|
0.2650 (0.1841)
|
caste_dalit
|
|
0.1384 (0.1804)
|
caste_muslim
|
|
0.4485* (0.1984)
|
Fixed-Effects:
|
——————–
|
—————–
|
year_el
|
Yes
|
Yes
|
district_name
|
Yes
|
Yes
|
___________________
|
____________________
|
_________________
|
Family
|
quasipoisson(“log”)
|
Probit
|
S.E.: Clustered
|
by: district_name
|
by: district_name
|
Observations
|
1,717
|
1,717
|
Squared Cor.
|
0.38965
|
0.31895
|
Pseudo R2
|
–
|
0.27639
|
BIC
|
–
|
2,294.9
|
Inorder to use the adr variables in the model, I have to limit the years to post 2009.
|
fit.poisson
|
fit.probit
|
fit.probit_no_se
|
|
Poisson
|
Probit
|
Probit without SE Clustered
|
Dependent Var.:
|
n_colleges
|
n_college_bin
|
n_college_bin
|
|
|
|
|
dyn_cum_2
|
-0.0900 (0.0393)
|
-0.2089*** (0.0496)
|
-0.1381*** (0.0245)
|
incumbent
|
0.0925** (0.0009)
|
-0.0257 (0.2049)
|
0.0473 (0.1384)
|
margin_percentage
|
0.0012 (0.0064)
|
0.0221*** (0.0038)
|
0.0143*** (0.0025)
|
turnout_percentage
|
-0.0255 (0.0132)
|
-0.0006 (0.0064)
|
0.0197*** (0.0038)
|
enop
|
0.0174 (0.0172)
|
0.0524 (0.1039)
|
-0.0589 (0.0694)
|
constituency_typeSC
|
-0.0394 (0.1717)
|
0.1306 (0.3922)
|
0.0924 (0.0885)
|
log(electors)
|
1.361 (0.2712)
|
1.839*** (0.0125)
|
1.329*** (0.1409)
|
log(total_immovable_assets_totals)
|
0.0015 (0.0023)
|
-0.0018 (0.0063)
|
0.0075 (0.0111)
|
log(total_movable_assets_totals)
|
0.0551 (0.0272)
|
0.0100 (0.0332)
|
0.0005 (0.0255)
|
serious_crime
|
-0.0025 (0.0038)
|
|
0.0224 (0.0328)
|
non_serious_crime
|
0.0173. (0.0014)
|
0.0139 (0.0199)
|
0.0048 (0.0042)
|
no_terms
|
|
0.1036 (0.1031)
|
0.0586 (0.0800)
|
Fixed-Effects:
|
—————–
|
——————-
|
——————-
|
year_el
|
Yes
|
Yes
|
Yes
|
district_name
|
Yes
|
Yes
|
No
|
__________________________________
|
_________________
|
___________________
|
___________________
|
Family
|
quasipoisson(“log”)
|
Probit
|
Probit
|
S.E.: Clustered
|
by: year_el
|
by: year_el
|
by: year_el
|
Observations
|
803
|
779
|
803
|
Squared Cor.
|
0.46917
|
0.38684
|
0.26312
|
Pseudo R2
|
–
|
0.33302
|
0.21573
|
BIC
|
–
|
1,282.4
|
947.26
|